mL, $CHCl_3$)).²⁰ The optical purity of (S)-2 (93% ee) was determined by conversion of a portion of this material to the bis-((R)-O-acetylmandelate) derivatives in $CDCl_3$ as described by Brintzinger et al.⁹ and integration of the cyclopentadienyl resonances observed in the ¹H NMR spectrum of the mixture.

Preparation of Compounds 4a and 4b and Reaction with Aldehydes: General Procedure. Titanocene dichloride 2 (190 mg, 0.5 mmol) was suspended in 2 mL of dry THF under argon. n-Propylmagnesium bromide (275 µL, 2.0 M in ether, 0.55 mmol) was added dropwise by syringe at room temperature to give a homogeneous brown red solution with some gas evolution being observed. The solution was heated with a hot air gun for several minutes until gas evolution ceased. The resulting purple-brown solution was cooled to room temperature. Crotylmagnesium chloride (250 µL, 1.8 M in THF, 0.45 mmol) was added dropwise by syringe to give a deep purple solution. After stirring for 30 min at room temperature, the aldehyde (0.5 mmol) was added neat by syringe. The resulting brown solution was stirred at room temperature for 1 h and 0.7 mL of a solution of concentrated HCl in THF (2.0 M, 1.4 mmol) added dropwise by syringe with vigorous stirring. Dry air was bubbled through the mixture for about a minute to give a red suspension. Anhydrous MgSO4 was added, and the mixture was swirled briefly and filtered, washing with THF. The filtrate was concentrated in vacuo and taken up in hexane-ether, 1:1, and filtered (to remove salts and compound 2), washing with additional hexanes. The filtrate was concentrated in vacuo to give the crude homoallylic alcohols and some additional titanocene dichloride 2. The titanocene dichloride could be precipitated by washing the oily solid with pentane and filtering again, washing with pentane. The pentane was removed in vacuo, and the crude homoallylic alcohols were purified by passage through a short column of silica gel, eluting with hexanes-ethyl acetate, 11:1. Under these conditions no fractionation of diastereomers is observed.⁴ The original filter cake that contained compound 2 and magnesium salts was washed with CH₂Cl₂, and

(21) (a) Grassi, A.; Zambelli, A.; Resconi, L.; Albizzati, E.; Mazzocchi,
R. Macromolecules 1988, 21, 617. (b) Pino, P.; Cioni, P.; Wei, J. J. Am.
Chem. Soc. 1987, 109, 6189. (c) Ewen, J. A.; Haspeslagh, L.; Atwood, J.
L.; Zhang, H. Ibid. 1987, 109, 6644. (d) Zambelli, A.; Ammendola, P.;
Grassi, A.; Longo, P.; Proto, A. Macromolecules 1986, 19, 2703. (e)
Kaminsky, W.; Kulper, K.; Niedoba, S. Makromol. Chem. 1986, 187, 377.
(f) Kaminsky, W.; Kulper, K.; Brintzinger, H. H. Angew. Chem. 1985, 97, 507. (g) Ewen, J. A. J. Am. Chem. Soc. 1984, 106, 6355.

the filtrate was combined with additional compound 2 that had been removed by precipitation from pentane. The filtrate was concentrated to dryness in vacuo; recovery was generally 80-90%of spectroscopically pure material. Material was accumulated from run to run and crystallized from hexanes-toluene prior to reuse. No decrease in optical activity was observed if care was exercised to avoid exposure to light.

Preparation and Analysis of (3,5-Dinitrophenyl)carbamates. 3,5-Dinitrobenzoyl azide (62.0 mg, 0.25 mmol) was heated in 1.0 mL of dry toluene at reflux for 15 min. A solution of the homoallylic alcohol (0.2 mmol) in 3×1.0 mL of toluene was added dropwise by syringe. The resulting solution was heated at reflux for 4 h and then cooled to room temperature. The solution was diluted with ether (10.0 mL) and washed with cold 2 M HCl, aqueous NaHCO₃, and brine. The organic phase was separated, dried over MgSO₄, filtered, and concentrated in vacuo. The crude mixture was passed through a short silica gel column, eluting with hexanes-ethyl acetate, 5:1, to remove a polar yellow impurity. The eluate was concentrated in vacuo, and the carbamate derivatives, homogeneous by ¹H NMR, were dissolved in ~ 20 mL of 90:10 hexanes-isopropyl alcohol and separated on a Pirkle Covalent [D]-naphthylalanine column (Regis Chemicals Ltd., 5 μ m, 25 cm by 4.6 mm i.d.). The separation conditions and retention times are summarized in Table II.

Preparation of Mosher's Acid Esters. The homoallylic alcohol (1.0 mmol) dissolved in 5 mL of dry dichloromethane was added to a solution of (R)- α -methoxy- α -(trifluromethyl)phenylacetyl chloride (287 mg, 1.1 mmol), 4-(dimethylamino)pyridine (120 mg, 1.1 mmol) and triethylamine (480 mg, 4.7 mmol) in 5 mL of dichloromethane. The solution was stirred at room temperature or heated at reflux until the alcohol was consumed as judged by TLC analyses (silica gel, hexanes-ethyl acetate, 10:1). With sterically hindered alcohols (e.g. derived from reagent 4b and pivaldehyde) it was necessary to add additional acid chloride and DMAP to ensure complete reaction. After reaction was complete, the solutions were cooled, diluted with ether, washed with cold, 1 M HCl, saturated NaHCO₃, and brine, and the organic phase was dried over MgSO4. Concentration in vacuo provided crude products which were analyzed by ¹H NMR spectroscopy in benzene- d_6 to determine diastereomer ratios. The relevant chemical shifts and assignments of the signals integrated are summarized in Table III.

Acknowledgment. We would like to thank the Natural Sciences and Engineering Research Council of Canada for financial support of this work.

Stereoselectivity of Organometallic Reagents Addition to 7-Oxabicyclo[2.2.1]hept-5-en-2-one¹

Odón Arjona,[†] Roberto Fernández de la Pradilla,[‡] Araceli Mallo,[†] Sonia Pérez,[†] and Joaquín Plumet^{*,†}

Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain, and Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain

Received November 17, 1988

The reaction between 7-oxabicyclo[2.2.1]hept-5-en-2-one and a variety of organolithium, Grignard, and organocuprate reagents is described. Organolithium and Grignard reagents yield the expected endo alcohols with high selectivity. Alternatively, lithium organocuprates add with high stereoselectivity to the hindered endo face of the carbonyl functionality to afford the corresponding exo alcohols.

The past few years have witnessed an upsurge of interest in the chemistry of derivatives of 7-oxabicyclo[2.2.1]heptane,² important starting materials for syntheses of natural products and derivatives of biological interest.³ Within this context, oxanorbornenic substrates 1 and 2 (Chart I)

are especially versatile starting materials for the preparation of a number of natural products.⁴ These synthetic

⁽²⁰⁾ At these concentrations photoracemization of compound 2 is extremely rapid and exposure to visible light must be avoided prior to measurement.

[†]Universidad Complutense.

[‡] Instituto de Química Orgánica General.

Table I. Reaction of 7-Oxabicyclo[2.2.1]hept-5-en-2-one with Organolithium and Grignard Reagents

2 3 equiv of RM Et2O. 0 °C 2 endo alcohol exo alcohol										
products										
entry	R	М	endo	exo	endo:exo ratio	yield,ª %				
1	Me	Li	3	4	20:1	95				
2	Me	MgI	3			95				
3	Et	MgI	5			75				
4	n-Bu	Li	6	7	11:1	90 ⁶				
5	n-Bu	MgBr	6			90°				
6	i-Pr	MgI	8			90				
7	$CH_2 = CH$	MgBr	9			70 ^d				
8	CH ₂ =CHCH ₂	MgBr	10			65 ^d				
9	Ph	MgBr	11			80				
10	Ph	Li	11	12	3.6:1	90				
11	2-furyl	Li	13	14	9:1	78				
12	1-naphthyl	Li	15	16	9:1	85				
13	NC-CH ₂	Li	17			75 ^e				
14	n•C₄H9−C≡C	Li	18	19	9:1	88				

^a Yields refer to pure isolated products. ^bReaction carried out with 1 equiv of n-butyllithium. ^cAn 8% yield of 7-oxabicyclo[2.2.1]hept-5-en-2-endo-ol was also isolated from this reaction. ^d In these cases, small amounts of byproducts were isolated in low yield (10-15%). The structure of these compounds has not been researched. "The reaction was carried out in THF from -78 °C to 0 °C.

intermediates ("naked sugars"4a) are now readily available⁵ even optically pure;⁶ however, the reactivity of these systems remains unexplored in many aspects. Thus, while the stereochemical outcome of nucleophilic additions of organolithium and Grignard reagents to other bicyclic ketones is a well-documented process,7 a similar study has not been effected for 7-oxanorbornenic ketones.⁸

The paramount importance of controlling the diastereoselectivity of the addition of C-nucleophiles to carbonyl compounds⁹ and the synthetic potential of oxanorbornenic

(4) (a) For a short synthesis of L-daunosamine, see: Warm, A.; Vogel, P. J. Org. Chem. 1986, 51, 5348. (b) For a synthesis of (+)- and (-)-methyl nonactate, see: Warm, A.; Vogel, P. Helv. Chim. Acta 1987, 70, 690. (c) For a synthesis of D- and L-ribose derivatives, see: Wagner, J.; Vieira, E.; Vogel, P. Helv. Chim. Acta 1988, 70, 624. (d) For a synthesis of (±)-castanospermine, see: Reymond, J.-L.; Vogel, P. Tetrahedron Lett. 1989, 30, 705.

(5) (a) Vieira, E.; Vogel, P. Helv. Chim. Acta 1982, 65, 1700. (b) Moore, J. A.; Partain, E. J. Org. Chem. 1983, 48, 1105. (c) Brion, F. Tetrahedron Lett. 1982, 23, 5299. (d) Nugent, W. A.; McKinney, R. J.; Harlow, R. L. Organometallics 1984, 3, 1315.

(6) (a) Vieira, E.; Vogel, P. Helv. Chim. Acta 1983, 66, 1865. (b) Black, K. A.; Vogel, P. Helv. Chim. Acta 1984, 67, 1612. (c) Takayama, H.; K. K. Vogel, T. Heit, Chin. Acta 1986, 07, 1012. (c) Jakyana, 11, Jyobe, A.; Koizumi, T. J. Chem. Soc., Chem. Commun. 1986, 771. (d) Saf, R.; Faber, K.; Penn, G.; Griengl, H. Tetrahedron 1988, 44, 389. (7) (a) Boone, J. R.; Ashby, E. C. Top. Stereochem. 1979, 11, 53. (b) Ashby, E. C.; Laemmile, J. T. Chem. Rev. 1975, 75, 521.

systems prompted us to investigate the stereoselectivity of the carbonyl alkylation of 7-oxabicyclo[2.2.1]hept-5en-2-one. It was envisioned that the unique structural features of the substrate would enable us to design appropriate nucleophiles to achieve endo and exo attacks with high diastereoselectivity.

Reaction of 7-Oxabicyclo[2.2.1]hept-5-en-2-one with Organolithium and Grignard Reagents. It is generally accepted that the stereochemical outcome of organometallic compound addition to bicyclic ketones is controlled by two main factors: steric interactions and torsional strain. These two factors reinforce each other in 7-unsubstituted substrates and exo attack is highly favored; however, when there is a substituent on position 7, syn to the carbonyl functionality, a nucleophile attempting to enter the molecule from the exo direction encounters such severe steric strain that exo attack is essentially precluded.⁷ Based upon these precedents, we anticipated that the reaction between 7-oxanorbornenone, 2, and organolithium and Grignard reagents would lead to endo alcohols with high selectivity.

The results obtained in the initial part of our investigation are summarized in Table I. Grignard reagents (entries 2, 3, and 5–9) afforded the expected endo alcohols¹⁰ in high yield and with complete stereoselectivity. Simple lithium derivatives (entries 1 and 4) produced predominantly endo mixtures of products,¹¹ in clear contrast with the behavior reported for norbornenic substrates.⁷ Aromatic organolithium reagents (entries 10-12) displayed a similar stereoselectivity, and small amounts of the corresponding exo isomers (12, 14, 16) were obtained. Entry

⁽¹⁾ For a preliminary communication, see: Arjona, O.; Fernández de la Pradilla, R.: Manzano, C.: Pérez, S.: Plumet, J. Tetrahedron Lett. 1987. 28, 5547.

⁽²⁾ For a recent review, see: Lipshutz, B. H. Chem. Rev. 1986, 86, 795. (3) For some leading references, see: (a) Das, J.; Vu, T.; Harris, D. N.;
 Ogletree, M. L. J. Med. Chem. 1988, 31, 930. (b) Wilson, N. L.; Jones,
 R. L.; Marr, C. G.; Muir, G. Eur. J. Med. Chem. 1988, 23, 359. (c) Novak, R. H., Mari, C. G., Muin, G. Edit. J. Mett. Chem. 1986, 25, 505, (c) Hovai,
 B. M.; Grubbs, R. H. J. Am. Chem. Soc. 1988, 110, 960. (d) Jung, M. E.;
 Street, L. J. Heterocycles 1988, 27, 45. (e) Reymond, J.-L.; Vogel, P.
 Tetrahedron Lett. 1988, 29, 3695. (f) Murai, A.; Tanimoto, N.; Sakamoto,
 N.; Masamune, T. J. Am. Chem. Soc. 1988, 110, 1985.

⁽⁸⁾ For other additions to the carbonyl group of oxabicyclic ketones, see: (a) Additions of complex metal hydrides to 7-oxabicyclo[2.2.1]hep-tan-2-one, Moursonides, J.; Wege, D. Aust. J. Chem. 1983, 36, 2473. (b) Hydride reductions of 5,6-exo-epoxy-7-oxabicyclo[2.2.1]heptan-2-one: Le Drian, C.; Vogel, P. Helv. Chim. Acta 1988, 71, 1399. (c) Additions of nitrogen nucleophiles: Arjona, O.; Mallo, A.; Manzano, C.; Plumet, J.; Calbie. L. Leime, C. J. Char. See. Dashie Theorem 2, 2009. Galbis, J.; Jaime, C. J. Chem. Soc., Perkin Trans. 2, 1988, 865. (d) Additions of dichloroketene: Arjona, O.; Fernández de la Pradilla, R.; Pérez, S.; Plumet, J. Tetrahedron 1988, 44, 1235. (e) Addition of methyllithium to 3,3-dimethyl-7-oxabicyclo[2.2.1]heptan-2-one: Buchbauer, G.; Holbik, H. Heterocycles 1988, 27, 1217. (f) Addition of the lithium anion of (+)-(S)-N,S-dimethyl-S-phenyl sulfoximide to 5-exo,6-exo-(isopropylidenedioxy)-7-oxabicyclo[2.2.1]heptan-2-one, see ref 4c.

⁽⁹⁾ For a new approach to predicting the stereochemistry of the addition of nucleophiles to chiral aldehydes and ketones, see: (a) Wu, Y-D.;
Houk, K. N. J. Am. Chem. Soc. 1987, 109, 908. (b) Wu, Y.-D.; Houk, K.
N.; Trost, B. M. J. Am. Chem. Soc. 1987, 109, 5560.
(10) This behavior is consistent with literature data for norbornenic

systems. See, for example: (a) Brown, W. L.; Fallis, A. G. Tetrahedron Lett. 1985, 26, 207. (b) Jung, M. E.; Hatfield, G. L. Tetrahedron Lett. 1983, 24, 2931.

⁽¹¹⁾ These reactions were generally carried out with a 3-fold excess of organometallic reagent. However, when 2 was reacted with n-BuLi under those conditions, only trace amounts of 6 and 7 were isolated. The structure of the major product has not been firmly established but it appears to be produced by opening of the oxygen bridge. Research in this direction is currently under way.

Table II.	Reaction o	f 7-Oxabicyc	lo[2.2.1]hept	-5-en-2-one with	Organocuprate	Reagents
-----------	------------	--------------	---------------	------------------	---------------	----------

		$\frac{3 \text{ equiv of RN}}{\text{Et}_2 0, 0 \cdot C,}$	4-R' ₂ CuLi 15 min 2 -		+		
		2		OH		E R	
	· · · · · · · · · · · · · · · · · · ·			products	exo a		
				alcohols			
entry	RM	R′	2, %	endo	exo	endo:exo ratio	yield,ª %
1	MeLi	Me		3	4	1:6	80
2	n-BuLi	n-Bu			7		70
3	PhLi	Ph		11	12	10:1	80
4		Me		3	4	1:6	85
5		n-Bu			7		75
6		\mathbf{Ph}		11	12	1:6	85
7		1-naphthyl		15	16	1:6	70
8 ^b	Ph_3CuLi_2		40		12		40
9 ⁶	• •	Ph	80				
10°		Me	5	3	4	1:5	75
11 ^d	MeLi	Me		3	4	1:2	66
12 ^d		Me	40	3	4	1:1	40
13	MeCu		90				
14 ^e	MeCu·BF ₃		95				
15⁄	Me ₂ CuMgBr			3			75
16 ^e	Me ₂ CuLi-BF ₃		40	3			40
178	MeCuCNLi		37	3			40
18 ^h	Me ₂ CuCNLi ₂		65	3	4	2:1	24

^a Yields refer to pure isolated alcohols. ^b The reaction was carried out in dimethyl sulfide. ^c The reaction was carried out with 2 equiv of Me_2CuLi . ^d The reaction was carried out at -78 °C and was difficult to reproduce. ^e The reaction was carried out at -78 °C. ^f Identical results were obtained in THF at -23 °C. ^f The reaction was slower than when Me_2CuLi was utilized. TLC analysis after 2 h showed only starting material. The results indicated correspond to 24 h at room temperature. ^h The reaction was allowed to proceed for 1 h.

10 shows that the stereochemical outcome of the process is highly dependent on the specific lithium derivative involved. This and the decrease of endo selectivity observed for organolithium reagents may be related to a number of factors, such as a different state of aggregation of the reagent and an earlier occurrence of the transition state in the reaction coordinate.

Axial-selective nucleophiles, such as acetylides¹² and lithiated acetonitrile,¹³ failed to produce the corresponding exo isomers in a stereoselective fashion. Thus, while the reaction with the latter afforded exclusively endo alcohol 17, predominantly endo mixtures of 18 and 19 were obtained with hexynyllithium (entry 14).

The stereochemical assignment of these adducts followed their postulated mechanism of formation, by analogy with literature data for norbornenic ketones, as well as their ¹H and ¹³C NMR spectral data. These assignments will be discussed in detail below.

Reaction of 7-Oxabicyclo[2.2.1]hept-5-en-2-one with Organocuprate Reagents. The second stage of this study addressed the stereoselective preparation of exo oxanorbornenic alcohols. For this purpose, the reagent developed by Macdonald and Still,¹⁴ prepared by addition of methyllithium to lithium dimethylcuprate, was perceived as an appealing possibility. It was envisioned that coordination of the "unreactive"¹⁵ cuprate species with the carbonyl group¹⁶ and with the oxygen bridge¹⁷ should block the exo face of 2, thus forcing nucleophilic attack by methyllithium to occur from the hindered endo face of the molecule. The results of the reaction between several organocuprates and 7-oxanorbornenone (2) are indicated in Table II.

When 2 was treated with 3 equiv of MeLi-Me₂CuLi, (entry 1), a mixture of endo and exo alcohols, **3** and **4** in a 1:6 ratio was obtained. The introduction of a *n*-butyl group was effected in a similar fashion (entry 2); these results seemed to confirm our hypothesis. However, the reaction of 2 with PhLi-Ph₂CuLi (entry 3) was devoid of the high exo selectivity encountered before and a 10:1 mixture of 11 and 12 was realized, perhaps indicating that nucleophilic addition was taking place faster than complexation in this case;¹⁸ this high endo selectivity is in sharp contrast with the outcome of the addition of PhLi (Table I, entry 10).¹⁹

In order to verify that the cuprate reagent did not react with the carbonyl group, the reaction of 2 with Me₂CuLi was examined (entry 4). Surprisingly, a mixture of 3 and 4 was obtained in identical ratio as when MeLi-Me₂CuLi had been utilized; analogous behavior was observed for

⁽¹²⁾ See for example: (a) Fleming, I.; Terret, N. K. J. Organomet. Chem. 1984, 264, 99. (b) Kuwajima, I.; Nakamura, E.; Hashimoto, K. Tetrahedron 1983, 39, 975.
(13) (a) Trost, B. M.; Flörez, J.; Jebaratnam, D. J. J. Am. Chem. Soc.

 ^{(13) (}a) Trost, B. M.; Flórez, J.; Jebaratnam, D. J. J. Am. Chem. Soc.
 1987, 109, 613. (b) Trost, B. M.; Flórez, J.; Haller, K. J. J. Org. Chem.
 1988, 53, 2394.

 ^{(14) (}a) Macdonald, T. L.; Still, W. C. J. Am. Chem. Soc. 1975, 97, 5280.
 (b) Macdonald, T. L.; Still, W. C. Tetrahedron Lett. 1976, 2659.

⁽¹⁵⁾ Lithium organocuprates were generally unreactive toward saturated ketones. For some reports of organocuprate/ketone additions, see:
(a) Scott, L. T.; Cotton, W. D. J. Chem. Soc., Chem. Commun. 1973, 320.
(b) Goldsmith, D. J.; Sakano, I. Tetrahedron Lett. 1974, 2857. (c) House, H. D.; Chu, C. Y.; Wilkins, J. M.; Umen, M. J. J. Org. Chem. 1975, 40, 1460. (d) Marino, J. P.; Floyd, D. M. Tetrahedron Lett. 1975, 3897.

^{(16) (}a) Ashby, E. C.; Noding, S. A. J. Org. Chem. 1979, 44, 4371. (b) Lipshutz reports that the addition of 3 equiv of RLi to CuI affords only R_2 CuLi and free RLi. See: Lipshutz, B. H. Synthesis 1987, 325.

⁽¹⁷⁾ It has been recently reported that an ortho-methoxymethyl substituent in a methyl cinnamate system intramolecularly assists the conjugate addition of Me₂CuLi. See: Hallnemo, G.; Ullenius, C. Tetrahedron Lett. 1986, 27, 395. For a recent report describing a highly diastereoselective conjugate addition of organocopper reagents on cinnamates bearing a chiral oxazolidine or imidazolidine ring, see: Alexakis, A.; Sedrani, R.; Mangeney, P.; Normant, J. F. Tetrahedron Lett. 1988, 29, 4411.

⁽¹⁸⁾ There are numerous examples in the literature of the "anomalous" behavior of vinyl and phenyl cuprates. See, for example: Marino, J. P.; Jaén, J. C. J. Am. Chem. Soc. 1982, 104, 3165.

⁽¹⁹⁾ The enhanced endo selectivity observed for the addition of PhLi- Ph_2CuLi in ether (positive Gilman test) presumably implies that alkylation of PhLi is taking place on a ketonic reactive species different from the one operative for the addition of PhLi. See ref 14 and 16.

Table III. Selected ¹H NMR and ¹³C NMR Data for Endo and Exo Oxanorbornenic Alcohols

	1H	INMR (δ p	pm)		C NMR (δ ppm)			
	CH ₃	H-3 _{endo}	H-3 _{exo}	CH ₃	C-2	C-1		
3	1.53	1.21	1.95	27.5	74.8	84.0		
4	1.21	1.43	1.82	23.3	76.0	86.9		
6		1.13	1.97		78.4	83.2		
7		1.47	1.78		79.1	86.3		
11		1.55	2.39		78.1	85.1		
12		2.16	2.11		79.8	87.0		

n-Bu₂CuLi (entry 5). Furthermore, the use of Ph₂CuLi (entry 6) resulted in a predominantly exo mixture of 11 and 12 (1:6), and the reaction with (1-Naphthyl)₂CuLi took place in a similar manner. In all cases (entries 4-7) the reactions were instantaneous.

The use of Ph₃CuLi₂, generated in dimethyl sulfide according to Bertz' procedure²⁰ resulted in 40% of exo alcohol 12 along with 40% of recovered ketone (entry 8). Ph₂CuLi in dimethyl sulfide proved to be even less reactive for this alkylation (entry 9), and the starting material was isolated in 80% yield.

The reaction of 2 with simple lithium organocuprates in an instantaneous manner and in high yields is unprecedented in the literature. The dramatic reversal of stereoselectivity, with respect to organolithium and Grignard reagents, is a unique phenomenon.¹⁴ These unexpected results prompted us to further investigate this process. Some of the experiments carried out are shown in Table II (entries 10-12).

The effect of the stoichiometry of the reaction was examined (entries 1 and 10), and 3 equiv of cuprate was found to produce the best results. The need of excess reagent may be interpreted in terms of the proposed complexation (vide supra). The solvent employed was next taken into consideration. It was encountered that an ether-hexane, 1:1, solvent mixture provided the same result as ether. However the use of THF resulted in quantitative recovery of 2; this observation is also consistent with the proposed complexation since 2 would not be expected to compete with THF for coordination sites on the cuprate. Lowering the reaction temperature to -78 °C (entries 11 and 12) caused a decrease of both the yield and diastereoselectivity of the reaction; this may be rationalized in terms of a less efficient formation of the proposed complex. The unlikely possibility that epimerization of the alcohols could be taking place was conclusively ruled out by subjecting both epimers 3 and 4 to a variety of reaction conditions (MeLi, MeLi-Me₂CuLi, and Me₂CuLi). No sign of epimerization was detected by ¹H NMR spectroscopy after several days.

The utilization of other organocopper reagents was then addressed, and the results of this part of the study are summarized in Table II (entries 13-18). The use of al-

^aReagents: (a) MeLi; (b) MeLi-Me₂CuLi; (c) Me₂CuLi.

kylorganocopper reagents (entry 13) did not lead to significant yields of products, nor did the organocopper-Lewis acid reagent, MeCu-BF₃²¹ (entry 14). The use of Grignard reagents as precursors for the cuprates led to exclusive formation of the endo alcohols (entry 15).²² As shown in Table II, Me₂CuLi·BF₃²¹ (entry 16) did not afford exo alcohols either. Cyanocuprates²³ and higher order mixed cyanocuprates¹⁶ (entries 17 and 18) were found to be quite unreactive.

Assignment of configuration of the addition products derived from ¹H NMR and ¹³C NMR chemical shift correlations. Table III contains selected spectroscopic data for representative isomeric oxanorbornenic alcohols. It was observed that the exo isomer 4 (R = Me) presents a remarkably shielded methyl group (1.21 ppm); this is consistent with the expected influence of the anisotropic double bond, a well-established phenomenon in norbornenic analogues.²⁴ Generally, exo isomers (4, 7, 12) presented significant downfield shifts for H-3_{endo} and upfield shifts for H-3_{exo}, as indicated in Table III. Further evidence supporting the assigned stereochemistry was obtained from the differential reactivity of 3 and 4 with benzenesulfenyl chloride. Whereas endo alcohol 3 led to the formation of a tricyclic oxetane by intramolecular cyclization, exo isomer 4 led to the corresponding addition product.²⁵¹³C NMR data also proved useful in assigning

⁽²⁰⁾ We thank one of the referees for suggesting this experiment, as well as the use of Ph₃Cu₂Li and Ph₃Cu₂Li·2BF₃:Et₂O. (See: Lipshutz, B. H.; Ellsworth, E. L.; Siahaan, T. J. J. Am. Chem. Soc. **1989**, 111, 1351). The former species produced a good yield of endo isomer 11, while the latter afforded only recovered starting material. With respect to the generation of Ph₃CuLi₂ in dimethyl sulfide (negative Gilman test), see: (a) Bertz, S. H.; Dabbagh, G. J. Am. Chem. Soc. 1988, 110, 3668. (b) Bertz, S. H.; Dabbagh, G. Tetrahedron 1989, 2, 45.

⁽²¹⁾ For a recent review, see: Yamamoto, Y. Angew. Chem., Int. Ed. Engl. 1986, 25, 947.

⁽²²⁾ For a detailed study on magnesium methylcuprates, see: Ashby, E. C.; Goel, A. B. J. Org. Chem. 1983, 48, 2125.
 (23) See for example: Marino, J. P.; Fernández de la Pradilla, R.;

Laborde, E. J. Org. Chem. 1987, 52, 4898.

⁽²⁴⁾ Jackman, L. M.; Sternhell, S. Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry; Pergamon Press: Oxford, 1969; p 84.

⁽²⁵⁾ Arjona, O.; Fernández de la Pradilla, R.; Pérez, R. A.; Plumet, J.; Viso, A. Tetrahedron Lett. 1987, 28, 5549.

stereochemistry. The signal for the methyl group appears at higher field for the exo isomer 4 than for the endo isomer 3, due to steric compression. In addition, C-2 and C-1 appear at lower field for the exo isomers 4, 7, and 12 than for the endo isomers.²⁶ The stereochemistry of the other oxanorbornenic carbinols was assigned by correlation of their spectra with those of 3, 4, 6, 7, 11, and 12.

In order to ascertain the influence of the carbon-carbon double bond on the stereochemical outcome of the process, the reaction of oxanorbornanic derivatives 20 and 21^{5a} (Scheme I) with methyllithium was studied. In both cases, exclusive formation of the endo alcohols 22 and 23 was observed. While our work was in progress, the reaction between methyllithium and 3,3-dimethyl-7-oxabicyclo-[2.2.1]heptan-2-one has been reported to produce the corresponding endo alcohol;^{8e} this observation is in agreement with the results described above.

To determine the generality of the organocuprate alkylation, the behavior of oxanorbornanic ketones 20 and 21 with organocuprate reagents was examined and the results obtained are shown in Scheme I. 7-Oxanorbornanone, 20, afforded fair yields of mixtures of saturated alcohols 22 and 24 (the structure of which was secured by hydrogenation of the unsaturated precursors 3 and 4 and chromatographic separation) in different ratios, depending upon the precise nucleophile utilized. However, the stereoselectivity of the reaction was severely diminished, and, furthermore, these reactions were hard to reproduce and afforded variable yields of aldol dimers. Even more disappointing results were encountered for isopropylidenedioxy derivative 21, which led to endo product 23 or to intractable mixtures of recovered starting material, 23, 25, and several other uncharacterized products, depending upon the reaction conditions. Since exo carbinols 24 and 25 are readily available from unsaturated precursor 4, the synthetic importance of these reactions is limited, and, therefore, they were not researched any further. Nevertheless, these tests contributed to defining the limitations of the methodology. Another substrate examined was bicyclo[2.2.1]hept-5-en-2-one, 26, which, under both sets of conditions, afforded complex mixtures of products from which 27 was isolated (60%) as a mixture of two isomers, indicating that enolization was the predominant reaction pathway in this case.²⁷

The above results indicate that the steric and electronic requirements of the endo alkylation of derivatives of 7oxanorbornane are very strict. It appears that both the oxygen bridge and the carbon-carbon double bond are crucial to achieve good stereoselectivities. Furthermore, the peculiar reactivity of 7-oxanorbornenic systems is underlined by the fact that, in contrast with the results of Yamamoto, use of the bulky aluminum reagent MAD, followed by addition of methyllithium,²⁸ led to endo methylcarbinol 3, with identical stereoselectivity to that encountered for methyllithium. This observation and the results encountered for axial selective nucleophiles^{12,13} indicate that there must be a delicate interplay of steric and electronic factors responsible for the unique endo alkylation of 7-oxabicyclo[2.2.1]hept-5-en-2-one with lithium organocuprates described in the present report.²⁹

Conclusions

The alkylation of 7-oxabicyclo[2.2.1]hept-5-en-2-one, 2, with Grignard reagents produces endo alcohols with very high selectivity. On the other hand, the unprecedented addition of simple lithium organocuprates to bicyclic ketone 2, albeit limited in scope, provides a straightforward entry for the stereoselective preparation of exo oxanorbornenic alcohols.

Experimental Section

General Methods. All reactions were carried out under a positive pressure of dry nitrogen or dry argon, using freshly distilled solvents under anhydrous conditions unless otherwise stated. Reagents and solvents were handled by using standard syringe techniques. Diethyl ether and tetrahydrofuran were distilled from lithium aluminum hydride, dimethyl sulfide from Na, hexane and ethyl acetate from phosphorus pentoxide, and methylene chloride from calcium hydride. Commercial methyllithium (low halide solution in ether), butyllithium (solution in hexane) phenyllithium (solution in benzene-ether, 70-30%), and vinylmagnesium bromide (solution in tetrahydrofuran) were purchased from Aldrich, Merck, or Fluka and titrated³⁰ prior to use. Reagent-grade copper iodide and copper bromide were purchased from Aldrich and used without further purification. Analytical TLC was carried out on 0.20 mm E. Merck precoated silica gel plates (60F-254), with detection by UV light, iodine, or acidic vanillin solution. Column chromatography was performed with E. Merck 230-400 mesh or 70-230 mesh silica gel. Melting points were determined on a Büchi 512 apparatus and are uncorrected. Mass spectra were recorded on a Varian MAT-711 instrument. Infrared spectra were recorded on either a Perkin-Elmer 781 or 257 grating spectrophotometers; band positions are indicated in wavenumbers. ¹H NMR spectra were recorded on a Varian T-60A, a Bruker AM-200, or a Varian XL-300 instrument, using CDCl₃ as solvent. ¹³C NMR spectra were measured on a Varian FT-80-A, using $CDCl_3$ as solvent, and are completely decoupled. In both, ¹H NMR and ¹³C NMR, chemical shifts are reported in δ units downfield from tetramethylsilane. The following abbreviations are used to describe peak patterns when appropriate: br = broad, s = singlet, d = doublet, t = triplet, q quartet, m = multiplet.

General Procedure for the Reaction between 7-Oxabicyclo[2.2.1]hept-5-en-2-one and Organolithium and Grignard **Reagents.** To a solution of 3 equiv of organolithium (or organomagnesium) reagent in anhydrous ether (10 mL/mmol of ketone), at 0 °C, was added 1 equiv of ketone dissolved in anhydrous ether (5 mL/mmol of ketone). The mixture was stirred at 0 °C for 15 min and then quenched with a saturated NH₄Cl solution. The organic layer was decanted, and the aqueous layer was extracted with ethyl acetate $(3 \times 10 \text{ mL/mmol of ketone})$. The combined organic solution and extracts were washed with a saturated NaCl solution and dried over anhydrous MgSO₄. Concentration under reduced pressure gave a crude product, which was purified by column chromatography on silica gel, using the appropriate eluent.

General Procedure for the Reaction between 7-Oxabicyclo[2.2.1]hept-5-en-2-one and Organocuprate Reagents. To a well-stirred suspension of CuI (3 equiv) in anhydrous ether (40 mL/mmol of ketone), at 0 °C, was slowly added the corresponding organolithium derivative (8.8 equiv for reactions with RLi-R2CuLi and 5.8 equiv for reactions with R₂CuLi). The mixture was stirred at 0 °C for 10 min, after which time a solution of 1 equiv of ketone in anhydrous ether (5 mL/mmol of ketone) was added dropwise. The reaction mixture was stirred for 15 min and then quenched with a saturated NH₄Cl solution. The solid residue was removed by filtration and carefully washed with ethyl acetate. The organic layer was decanted, and the aqueous layer was extracted with

⁽²⁶⁾ This trend is observed for related norbornenic systems. See, for xample: Schneider, H.-J.; Weigand, E. F.; Becker, N. J. Org. Chem. 1988, 53, 3361.

⁽²⁷⁾ For a report describing the alkylation and oligomerization of the lithium enclate of 2-norbornenone, see: Horner, J. H.; Vera, M.; Grutzner, J. B. J. Org. Chem. 1986, 51, 4212. See also: Tureček, F.; Brabec, L.; Korvola, J. J. Am. Chem. Soc. 1988, 110, 7984.
 (28) Maruoka, K.; Itoh, T.; Sakurai, M.; Nonoshita, K.; Yamamoto, H.

J. Am. Chem. Soc. 1988, 110, 3588.

⁽²⁹⁾ For a report describing the unexpectedly high trans diastereofacial selectivity encountered for cuprate additions to 5-methoxy-2-cyclo-pentenone, see: Smith, A. B. III; Dunlap, N. K.; Sulikowski, G. A. Tetrahedron Lett. 1988, 29, 439. In this contribution, the observed selectivity is accounted for in terms of a novel stereoelectronic effect.

⁽³⁰⁾ Watson, S. C.; Eastham, J. E. J. Organomet. Chem. 1967, 9, 165.

dichloromethane $(3 \times 20 \text{ mL/mmol} \text{ of ketone})$. The combined organic extracts were washed with a saturated NaCl solution and dried over anhydrous MgSO₄. Concentration under reduced pressure gave a crude product, which was purified by column chromatography on silica gel, using the appropriate eluent.

2-exo-Methyl-7-oxabicyclo[2.2.1]hept-5-en-2-*endo-ol* (3). From 250 mg (2.27 mmol) of **2** and methyllithium (1.6 M in ether) was isolated 272 mg of **3** (95%) as a light yellow oil after chromatography (hexane-ethyl acetate, 1:1; R_f 0.18) (endo:exo ratio, 20:1). The use of methylmagnesium iodide resulted in exclusive formation of the endo isomer in similar yields: IR (neat) 3450, 3040-2860, 1000 cm⁻¹; ¹H NMR δ 6.58 (dd, 1 H, J = 5.9, 1.7 Hz, H-5), 6.47 (dd, 1 H, J = 5.9, 1.7 Hz, H-6), 4.92 (dd, 1 H, J = 4.5, 1.7 Hz, H-4), 4.42 (d, 1 H, J = 1.5 Hz, H-1), 1.95 (dd, 1 H, J = 11.7, 4.8 Hz, H-3_{exo}), 1.60 (br, 1 H, OH), 1.53 (s, 3 H), 1.21 (d, 1 H, J = 11.7 Hz, H-3_{exo}); ¹³C NMR δ 136.8, 133.0, 84.0, 79.2, 74.8, 42.3, 27.5. Anal. Calcd for C₇H₁₀O₂: C, 66.64; H, 7.99. Found: C, 66.50; H, 7.81.

2-endo -Methyl-7-oxabicyclo[2.2.1]hept-5-en-2-exo-ol (4). From 440 mg (4 mmol) of 2 and MeLi-Me₂CuLi was isolated 403 mg of 4 (80%) as a light yellow oil after chromatography (hexane-ethyl acetate, 1:1, R_f 0.17) (endo:exo ratio, 1:6). These isomers could not be separated. Similar results were obtained from the reaction of 2 with Me₂CuLi (85%), generated from CuI or CuBr; IR (neat) 3420, 3040-2860, 1320, 1230, 1100, 900, 710 cm⁻¹; ¹H NMR δ 6.38 (dd, 1 H, J = 5.9, 1.5 Hz, H-5), 6.32 (dd, 1 H, J = 5.9, 1.6 Hz, H-6), 4.96 (d, 1 H, J = 4.8 Hz, H-4), 4.43 (s, 1 H, H-1), 2.06 (br, 1 H, OH), 1.82 (dd, 1 H, J = 12.1, 4.8 Hz, H-3_{exo}), 1.43 (d, 1 H, J = 12.1 Hz, H-3_{endo}), 1.21 (s, 3 H); ¹³C NMR δ 137.2, 132.7, 86.9, 78.1, 76.0, 42.4, 23.3. Anal. Calcd for C₇H₁₀O₂: C, 66.64; H, 7.99. Found: C, 66.56; H, 7.82.

2-exo-Ethyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-ol (5). From 250 mg (2.27 mmol) of **2** and ethylmagnesium iodide was isolated 238 mg of **5** (75%) as a light yellow oil after chromatography (hexane-ethyl acetate, 1:1, R_f 0.25): IR (neat) 3450, 3060-2900, 1000, 895, 710, 675 cm⁻¹; ¹H NMR δ 6.53 (m, 2 H, H-5, H-6), 4.98 (d, 1 H, J = 4.0 Hz, H-4), 4.50 (s, 1 H, H-1), 1.98 (dd, 1 H, J = 10.0 Hz, H-3_{exo}), 1.83 (q, 2 H, J = 7.0 Hz), 1.72 (br, 1 H, OH), 1.17 (d, 1 H, J = 10.0 Hz, H-3_{endo}), 1.04 (t, 3 H, J = 7.0 Hz); ¹³C NMR δ 137.7, 133.4, 82.7, 79.4, 78.5, 41.1, 32.7, 8.1. Anal. Calcd for C₈H₁₂O₂: C, 68.54; H, 8.63. Found: C, 68.48; H, 8.68.

2-exo-n-Butyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-ol (6). From 500 mg (4.54 mmol) of **2** and *n*-butylmagnesium bromide were isolated 687 mg of **6** (90%) as a light yellow oil after chromatography (hexane-ethyl acetate, 1:1, R_f 0.30) and 61 mg of 7-oxabicyclo[2.2.1]hept-5-en-2-endo-ol (8%). The use of 1 equiv of *n*-butyllithium resulted in a 90% yield of a mixture of **6** and the exo isomer 7 (endo:exo ratio, 11:1): IR (neat) 3600, 3450, 3040-2860, 1320, 1020, 670 cm⁻¹; ¹H NMR δ 6.56 (dd, 1 H, J = 5.8, 1.7 Hz, H-5), 6.43 (dd, 1 H, J = 5.8, 1.7 Hz, H-6), 4.88 (dd, 1 H, J = 4.8, 1.0 Hz, H-4), 4.73 (dd, 1 H, J = 1.7, 0.7 Hz, H-1), 1.97 (dd, 1 H, J = 11.8, 4.8 Hz, H-3_{exo}), 1.79-1.71 (m, 2 H), 1.53-1.31 (m, 5 H), 1.13 (d, 1 H, J = 11.8 Hz, H-3_{endo}), 0.90 (t, 3 H, J = 7.0 Hz); ¹³C NMR δ 138.0, 133.4, 83.2, 79.5, 78.4, 41.6, 40.0, 26.2, 23.0, 13.9. Anal. Calcd for C₁₀H₁₆O₂: C, 71.39; H, 9.59. Found: C, 71.21; H, 9.72.

2-endo - **n**-Butyl-7-oxabicyclo[2.2.1]hept-5-en-2-exo-ol (7). From 330 mg (3 mmol) of 2 with *n*-BuLi-*n*-Bu₂CuLi was isolated 353 mg of 7 (70%), as a light yellow oil after chromatography (hexane-ethyl acetate, 1:1, R_f 0.28), contaminated with a small amount of an inseparable byproduct whose spectral data was different from the data of the endo isomer 6. Similar results were obtained from the reaction of 2 with *n*-Bu₂CuLi (75%): IR (neat) 3450, 3020-2840, 1460, 1310, 1170, 1080, 855, 730 cm⁻¹; ¹H NMR δ 6.40 (dd, 1 H, J = 5.8, 1.5 Hz, H-5), 6.34 (dd, 1 H, J = 5.8, 1.4 Hz, H-6), 4.99 (d, 1 H, J = 4.8 Hz, H-4), 4.53 (s, 1 H, H-1), 2.35-2.20 (br, 1 H, OH), 1.78 (dd, 1 H, J = 12.1, 4.8 Hz, H-3, .47 (d, 1 H, J = 12.1 Hz, H-3_{endo}), 1.49-1.26 (m, 6 H), 0.90 (m, 3 H); ¹³C NMR δ 137.3, 132.6, 86.3, 79.1, 77.6, 41.6, 37.3, 26.2, 22.7, 13.5. Anal. Calcd for C₁₀H₁₆O₂: C, 71.39; H, 9.59. Found: C, 72.40; H, 10.03.

2-exo-Isopropyl-7-oxabicyclo[2.2.1]hept-5-en-2-*endo-ol* (8). From 250 mg (2.27 mmol) of 2 and isopropylmagnesium iodide was isolated 314 mg of 8 (90%) as a light yellow oil after chromatography (hexane-ethyl acetate, 1:1, R_f 0.28): IR (neat) 3610,

3470, 3040–2890, 1025, 1000, 670 cm⁻¹; ¹H NMR δ 6.61 (dd, 1 H, J = 5.8, 1.7 Hz, H-5), 6.48 (dd, 1 H, J = 5.8, 1.8 Hz, H-6), 4.92 (dd, 1 H, J = 4.9, 1.7 Hz, H-4), 4.69 (d, 1 H, J = 1.8 Hz, H-1), 2.05 (dd, 1 H, J = 12.0, 4.9 Hz, H-3 $_{\rm exo}$), 1.91 (heptuplet, 1 H, J = 6.8 Hz, H-1'), 1.55–1.45 (br, 1 H, OH), 1.10 (d, 1 H, J = 12.0 Hz, H-3 $_{\rm endo}$), 1.04 (d, 3 H, J = 6.8 Hz), 1.01 (d, 1 H, J = 6.8 Hz); ¹³C NMR δ 137.4, 134.0, 81.2, 80.6, 79.1, 39.8, 35.1, 17.3, 16.9. Anal. Calcd for C₉H₁₄O₂: C, 70.10; H, 9.15. Found: C, 70.20; H, 9.09.

2-exo-Vinyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-ol (9). From 330 mg (3 mmol) of **2** and vinylmagnesium bromide (1 M in THF) was isolated 289 mg of **9** (70%) as a light yellow oil after chromatography (hexane-ethyl acetate, 1:1, R_f 0.41) along with a small amount (30 mg) of an uncharacterized byproduct: IR (neat) 3400, 3080, 3020-2800, 1640, 1315, 1220, 1005, 790, 705 cm⁻¹; ¹H NMR δ 6.66 (dd, 1 H, J = 5.9, 1.66 Hz, H-5), 6.50 (dd, 1 H, J = 5.9, 1.6 Hz, H-6), 6.17 (dd, 1 H, J = 17.3, 10.7 Hz, H-1'), 5.35 (d, 1 H, J = 17.3 Hz, H-2't), 5.16 (d, 1 H, J = 10.7 Hz, H-2'c), 5.03 (d, 1 H, J = 12.0, 4.9 Hz, H-3_{exo}), 1.33 (d, 1 H, J = 12.0 Hz, H-3_{endo}); ¹³C NMR δ 143.8, 137.7, 133.2, 110.9, 84.7, 79.1, 77.0, 41.8. Anal. Calcd for C₈H₁₀O₂: C, 69.54; H, 7.29. Found: C, 69.39; H, 7.15.

2-exo-Allyl-7-oxabicyclo[**2.2.1**]hept-5-en-2-endo-ol (10). From 330 mg (3 mmol) of **2** and allylmagnesium bromide was isolated 276 mg of **10** (65%) as a light yellow oil after chromatography (hexane-ethyl acetate, 1:1, R_f 0.47) along with a small amount (40 mg) of an uncharacterized byproduct: IR (neat) 3435, 3080, 3040–2800, 1640, 1435, 1320, 920, 805, 710 cm⁻¹; ¹H NMR δ 6.58 (dd, 1 H, J = 5.8, 1.7 Hz, H-5), 6.44 (dd, 1 H, J = 5.8, 1.7 Hz, H-6), 5.97 (ddt, 1 H, J = 17.8, 9.5, 7.2 Hz, H-2'), 5.25–5.14 (m, 2 H, H-3'c, H-3't), 4.93 (dd, 1 H, J = 4.8, 1.0 Hz, H-4), 4.54 (dd, 1 H, J = 11.8, 4.8 Hz, H-3_{exo}), 1.21 (d, 1 H, J = 11.8 Hz, H-3_{exo}); ¹³C NMR δ 137.2, 133.2, 132.8, 117.9, 81.9, 78.9, 76.5, 44.2, 40.5. Anal. Calcd for C₉H₁₂O₂: C, 71.03; H, 7.95. Found: C, 71.20; H, 8.10.

2-exo -**Phenyl-7-oxabicyclo**[2.2.1]hept-5-en-2-endo-ol (11). From 250 mg (2.27 mmol) of 2 and phenylmagnesium bromide was isolated 341 mg (80%) of 11 as a light yellow oil after chromatography (hexane-ethyl acetate, 1:1, R_f 0.38). The use of phenyllithium (2 M in benzene-ether, 70-30%) resulted in a 90% yield of a mixture of 11 and the exo isomer 12 (endo:exo ratio, 3.6:1): IR (neat) 3450, 3100-2900, 1600, 1490, 1445, 1315, 1060, 850, 780-760, 700 cm⁻¹; ¹H NMR δ 7.61-7.56 (m, 2 H, H-Ar), 7.32-7.17 (m, 3 H, H-Ar), 6.68 (dd, 1 H, J = 5.8, 1.7 Hz, H-6), 5.05 (d, 1 H, J = 4.9 Hz, H-4), 4.70 (s, 1 H, H-1), 2.39 (dd, 1 H, J = 12.2, 4.9 Hz, H-3_{exo}), 1.82 (br, 1 H, OH), 1.55 (d, 1 H, J = 12.2 Hz, H-3_{endo}); ¹³C NMR δ 146.6, 138.3, 134.1, 127.7, 126.3, 125.0, 85.1, 79.1, 78.1, 45.2. Anal. Calcd for C₁₂H₁₂O₂: C, 76.57; H, 6.43. Found: C, 76.30; H, 6.28.

2-endo-Phenyl-7-oxabicyclo[2.2.1]hept-5-en-2-exo-ol (12). From 110 mg (1 mmol) of 2 and Ph₂CuLi was isolated 160 mg of a 1:6 mixture of 11 and 12 after filtration through silica gel (85%). These were later separated by chromatography (hexane-ethyl acetate, 1:1, R_f 0.31) to afford 137 mg of pure 12 as a light yellow oil. The reaction with PhLi-Ph₂CuLi led to a 10:1 mixture of 11 and 12 (80%). The reaction with Ph₃CuLi₂ in dimethyl sulfide led to 12 (40%) and 2 (40%): IR (neat) 3450, 3100-2950, 1445, 1205, 1195, 910, 900, 700 cm⁻¹; ¹H NMR δ 7.34–7.19 (m, 5 H, H-Ar), 6.42 (dd, 1 H, J = 5.9, 1.6 Hz, H-5), 6.02 (dd, 1 H, J = 5.9, 1.8 Hz, H-6), 5.10 (dd, 1 H, J = 4.0, 1.0Hz, H-4), 4.70 (dd, 1 H, J = 1.8, 0.9 Hz, H-1), 2.97 (br, 1 H, OH), 2.16 (d, 1 H, J = 12.5 Hz, H-3_{endo}), 2.11 (dd, 1 H, J = 12.5, 4.0 Hz, H-3_{exo}); ¹³C NMR δ 141.2, 137.2, 133.0, 127.5, 126.8, 126.2, 87.0, 79.8, 78.0, 42.5. Anal. Calcd for C₁₂H₁₂O₂: C, 76.57; H, 6.43. Found: C, 76.42; H, 6.30.

2-exo-(2-Furyl)-7-oxabicyclo[2.2.1]hept-5-en-2-*endo-ol* (13). From 250 mg (2.27 mmol) of **2** and 2-furyllithium (prepared from furan and *n*-butyllithium) was isolated 315.8 mg (78%) of an inseparable 9:1 mixture of 13 and the exo isomer 14 after chromatography (hexane-ethyl acetate, 2:1, R_f 0.18): IR (neat) 3400, 3100–2850, 1500, 1315, 1220, 1075, 1000 cm⁻¹; ¹H NMR δ 7.40 (d, 1 H, J = 0.8 Hz, H-5'), 6.67 (dd, 1 H, J = 5.8, 1.4 Hz, H-5), 6.53 (dd, 1 H, J = 5.8, 1.5 Hz, H-6), 6.36–6.26 (m, 2 H, H-3', H-4'), 5.05 (d, 1 H, J = 4.8 Hz, H-4), 4.94 (s, 1 H, H-1), 2.57 (dd, 1 H, J = 12.0, 4.8 Hz, H-3_{exo}), 2.3–2.0 (br, 1 H, OH), 1.54 (d, 1 H, J

= 12.0 Hz, H-3_{endo}); ¹³C NMR δ 157.8, 141.4, 137.5, 132.8, 109.8, 105.5, 83.0, 79.1, 74.9, 40.9. Anal. Calcd for C₁₀H₁₀O₃: C, 67.40; H, 5.66. Found: C, 67.53; H, 5.72.

2-exo-(1-Naphthyl)-7-oxabicyclo[2.2.1]hept-5-en-2-*endo-***ol** (15). From 330 mg (3 mmol) of 2 and 1-lithionaphthalene (prepared from 1-bromonaphthalene and *n*-BuLi) was isolated 607.5 mg (85%) of crude product as a yellowish oil (endo:exo ratio, 9:1). These isomers were separated by chromatography (hexane-ethyl acetate, 1:1, R_f 0.32) to afford 545 mg of pure 15 as a white solid (mp 66-67 °C): IR (KBr) 3360, 3080-2930, 1600, 1505, 1315, 1065, 1015 cm⁻¹; ¹H NMR δ 8.46-8.41 (m, 1 H, H-Ar), 7.89-7.76 (m, 2 H, H-Ar), 7.60-7.38 (m, 4 H, H-Ar), 6.80 (dd, 1 H, J = 5.8, 1.7 Hz, H-5), 6.62 (dd, 1 H, J = 5.8, 1.8 Hz, H-6), 5.49 (d, 1 H, J = 1.7 Hz, H-1), 5.02 (dd, 1 H, J = 4.8, 0.7 Hz, H-4), 2.52 (dd, 1 H, J = 11.9 Hz, H-3_{endo}); ¹³C NMR δ 140.7, 138.8, 134.8, 133.6, 131.6, 128.6, 128.1, 126.7, 125.2, 125.1, 124.4, 121.5, 82.0, 79.3, 78.3, 44.1. Anal. Calcd for C₁₆H₁₄O₂: C, 80.65; H, 5.92. Found: C, 80.79; H, 6.06.

2-endo-(1-Naphthyl)-7-oxabicyclo[2.2.1]hept-5-en-2-exo-ol (16). From 330 mg (3 mmol) of 2 and (1-naphthyl)₂CuLi was isolated 500 mg (70%) of crude product as a yellowish oil (endo:exo ratio, 1:6). These isomers were separated by chromatography (hexane-ethyl acetate, 1:1, R_f 0.27) to afford 428 mg of pure 16 as a white solid (mp 85-86 °C): IR (KBr) 3400, 3060-2850, 1600, 1505, 1315, 1065 cm⁻¹; ¹H NMR δ 8.50-8.47 (m, 1 H, H-Ar), 7.86-7.79 (m, 2 H, H-Ar), 7.57-7.26 (m, 4 H, H-Ar), 6.42 (dd, 1 H, J = 5.9, 1.7 Hz, H-5), 6.34 (dd, 1 H, J = 5.9, 1.7 Hz, H-6), 5.34 (s, 1 H, H-1), 5.18 (d, 1 H, J = 4.8 Hz, H-4), 2.95-2.80 (br, 1 H, OH), 2.64 (dd, 1 H, J = 12.2, 4.8 Hz, H-3_{exo}), 2.25 (d, 1 H, J = 12.2 Hz, H-3_{endo}); ¹³C NMR δ 138.2, 137.0, 134.1, 133.6, 131.7, 128.6, 128.4, 126.0, 125.6, 125.3, 124.1, 123.9, 86.6, 81.2, 77.9, 43.4. Anal. Calcd for C₁₆H₁₄O₂: C, 80.65; H, 5.92. Found: C, 80.78; H, 6.07.

2-exo -(Cyanomethyl)-7-oxabicyclo[2.2.1]hept-5-en-2endo-ol (17). From 110 mg (1 mmol) of 2 and LiCH₂CN (prepared from LDA and CH₃CN at -78 °C) in tetrahydrofuran (15 mL) was isolated 113 mg (75%) of 17 as a white solid (mp 100-101 °C) after chromatography (hexane-ethyl acetate, 1:1, R_f 0.17): IR (KBr) 3340, 3040-2860, 2250, 1410, 1320, 1300, 1245, 1090, 1000 cm⁻¹; ¹H NMR δ 6.68 (dd, 1 H, J = 5.7, 1.4 Hz, H-5), 6.49 (dd, 1 H, J = 5.7, 1.6 Hz, H-6), 5.01 (dd, 1 H, J = 4.8, 0.5 Hz, H-4), 4.64 (d, 1 H, J = 0.6 Hz, H-1), 2.84 (s, 2 H, CH₂), 2.72 (s, 1 H, OH), 2.10 (dd, 1 H, J = 12.2, 4.8 Hz, H-3_{ero}), 1.39 (d, 1 H, J =12.2 Hz, H-3_{endo}); ¹³C NMR δ 138.5, 132.4, 117.6, 82.7, 79.8, 76.2, 41.6, 29.8. Anal. Calcd for C₈H₉O₂N: C, 63.56; H, 6.00; N, 9.26. Found: C, 63.63; H, 6.15; N, 9.31.

2-exo-(1-Hexynyl)-7-oxabicyclo[2.2.1]hept-5-en-2-endo-ol (18) and 2-endo-(1-Hexynyl)-7-oxabicyclo[2.2.1]hept-5-en-2-exo-ol (19). From 330 mg (3 mmol) of 2 and 1-lithio-1-hexyne (prepared from 1-hexyne and n-BuLi) was isolated 507 mg (88%) of crude product as a yellowish oil (endo:exo ratio, 9:1). These isomers were separated by chromatography (hexane-ethyl acetate, 1:1).

18: R_f 0.31 (hexane:ethyl acetate, 1:1); IR (neat) 3400, 2990–2860, 2215, 1310, 1065, 1020, 900 cm⁻¹; ¹H NMR δ 6.57 (dd, 1 H, J = 5.8, 1.7 Hz, H-5), 6.42 (dd, 1 H, J = 5.8, 1.6 Hz, H-6), 5.02 (dd, 1 H, J = 4.8, 1.5 Hz, H-4), 4.81 (d, 1 H, J = 1.5 Hz, H-1), 2.83 (br, 1 H, OH), 2.44 (dd, 1 H, J = 11.7, 4.8 Hz, H-3_{exo}), 2.25–2.18 (m, 2 H), 1.49 (d, 1 H, J = 11.7 Hz, H-3_{endo}), 1.71–1.33 (m, 4 H), 0.90 (t, 3 H, J = 7.1 Hz); ¹³C NMR δ 137.0, 132.5, 85.0, 83.9, 83.2, 79.1, 70.4, 44.2, 30.1, 21.4, 17.9, 13.0. Anal. Calcd for C₁₂H₁₆O₂:

C, 74.96; H, 8.39. Found: C, 75.18; H, 8.43.

19: R_f 0.27 (hexane-ethyl acetate, 1:1); IR (neat) 3400, 2990–2840, 2220, 1310, 1065, 1020, 900 cm⁻¹ ¹H NMR δ 6.39 (m, 2 H, H-5, H-6), 5.01 (d, 1 H, J = 4.8 Hz, H-4), 4.65 (s, 1 H, H-1), 2.60 (br, 1 H, OH) 2.30–1.93 (m, 4 H), 1.60–1.05 (m, 4 H), 1.05–0.80 (m, 3 H); ¹³C NMR δ 137.9, 133.5, 87.4, 85.2, 80.5, 78.6, 71.5, 45.7, 30.4, 21.7, 18.2, 13.4. Anal. Calcd for C₁₂H₁₆O₂: C, 74.96; H, 8.39. Found: C, 74.83; H, 8.25.

2-exo-**Methyl-7-oxabicyclo**[**2.2.1**]**heptan-2-***endo*-ol (**22**). From 336 mg (3 mmol) of **20** and methyllithium (1.6 M in ether) was isolated 326 mg of **22** (85%) as a light yellow oil after chromatography (hexane-ethyl acetate, 1:1, R_f 0.28): IR (neat) 3420, 3000-2840, 1445, 1370, 1200, 990, 875 cm⁻¹; ¹H NMR δ 4.49 (t_{ap}, 1 H, J = 5.40 Hz, H-4), 4.00 (d, 1 H, J = 4.8 Hz, H-1), 3.00 (br, 1 H, OH), 2.33-2.21 (m, 1 H, H-3_{exo}), 1.85-1.44 (m, 4 H, H-5, H-6), 1.40 (d, 1 H, J = 12.1 Hz, H-3_{endo}), 1.36 (s, 3 H); ¹³C NMR δ 83.1, 77.3, 76.6, 45.9, 28.9, 28.8, 22.2. Anal. Calcd for $C_7H_{12}O_2$: C, 65.59; H, 9.44. Found: C, 65.40; H, 9.25.

2-exo -Methyl-5-exo, 6-exo - (isopropylidenedioxy)-7-oxabicyclo[2.2.1]heptan-2-endo-ol (23). From 320 mg (1.79 mmol) of 21 and methyllithium (1.6 M in ether) was isolated 232 mg of 23 (65%) as a white solid (mp 108–110 °C) after chromatography (hexane-ethyl acetate, 2:1, R_f 0.24): IR (KBr) 3520, 3000–2820, 1205, 1050 cm⁻¹; ¹H NMR δ 4.97 (d, 1 H, J = 5.6 Hz, H-6), 4.37 (d, 1 H, J = 5.6 Hz, H-5), 4.34 (d, 1 H, J = 6.6 Hz, H-4), 3.91 (d, 1 H, J = 0.5 Hz, H-1), 1.80 (dd, 1 H, J = 12.8, 6.6 Hz, H-3_{exo}), 1.72 (s, 1 H, OH), 1.47 (d, 3 H, J = 0.5 Hz), 1.30 (d, 1 H, J = 12.8 Hz, H-3_{endo}); ¹³C NMR δ 110.4, 85.0, 81.1, 80.0, 77.9, 74.8, 40.2, 28.9, 25.3, 24.4. Anal. Calcd for C₁₀H₁₆O₄: C, 59.98; H, 8.05. Found: C, 59.79; H, 8.13.

2-endo-Methyl-7-oxabicyclo[2.2.1]heptan-2-exo-ol (24). From the hydrogenation (Pd/C) of 410 mg (3.25 mmol) of a mixture of **3** and 4 (1:6 ratio) was obtained 328 mg of 24 (79%) as a light yellow oil after chromatography (hexane-ethyl acetate, 1:1, R_f 0.24): IR (neat) 3420, 3000–2860, 1478, 1440, 1355, 1180, 1085, 930, 880 cm⁻¹; ¹H NMR δ 4.66–4.43 (m, 1 H, H-4), 4.23–4.06 (m, 1 H, H-1), 3.03 (s, 1 H, OH), 2.06–1.47 (m, 6 H), 1.32 (s, 3 H); ¹³C NMR δ 85.8, 78.7, 76.6, 49.1, 29.1, 23.5, 21.9. Anal. Calcd for C₇H₁₂O₂: C, 65.59; H, 9.44. Found: C, 65.55; H, 9.50.

Reaction of Bicyclo[2.2.1]hept-5-en-2-one (26) with MeLi-Me₂CuLi and Me₂CuLi. From 216 mg (2 mmol) of 26^{31} and MeLi-Me₂CuLi was isolated 259 mg (60%) of aldol dimer 27 as a yellowish solid (mp 102-105 °C) after chromatography (hexane -ethyl acetate, 5:1, R_f 0.36). Identical results were obtained with Me₂CuLi (52%): IR (KBr) 3440, 3070, 3020-2880, 1735, 1450, 1255, 1100, 725 cm⁻¹; ¹H NMR δ 6.56 (dd, 1 H, J = 6.0, 3.0 Hz), 6.36 (dd, 1 H, J = 6.0, 3.0 Hz), 6.26-5.90 (m, 2 H), 3.66 (m, 1 H), 3.16 (m, 1 H), 3.03-2.26 (m, 3 H), 2.26-0.93 (m, 7 H); ¹³C NMR δ 215.3, 145.0, 144.9, 140.6, 140.5, 133.3, 133.0, 132.8, 132.8, 82.2, 55.9, 55.6, 51.8, 51.4, 51.0, 50.4, 48.6, 47.5, 44.2, 43.8, 43.5, 42.9, 42.5; mass spectrum, m/e 216 (M), 85 (base). Anal. Calcd for $C_{14}H_{16}O_2$: C, 77.74; H, 7.46. Found: C, 77.89; H, 7.72.

Acknowledgment. This research was supported by CAICYT (Grant No. PB87-0064) and by the CSIC. One of us (A.M.) gratefully acknowledges the Comunidad de Madrid for a doctoral fellowship.

⁽³¹⁾ Freeman, P. K.; Balls, D. M.; Brown, D. J. J. Org. Chem. 1968, 33, 2211.